Arboristik - Wissen

Baumpflege  |  Nachrichten  |  Produkte  |  Schadorganismen  |  Wissen  |  Recht

 

 

Projekt "TreeSatAI"

Künstliche Intelligenz mit Erdbeobachtungs- und Multi-Source Geodaten

 

Drohnenflug über ein Waldgebiet

Foto: Andreas Riedelmeier, Pixabay

 

(9.11.2020) Das Ziel des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts TreeSatAI ist die Entwicklung von Methoden mit Künstlicher Intelligenz für das Monitoring von Wäldern und Baumbeständen auf lokaler, regionaler und globaler Ebene.

 

Harz, Trocken- und Borkenkäferschäden
Durch Trockenstress und Borkenkäfer geschädigte Waldflächen im Harz. Foto: TU Berlin / Hartmut Kenneweg

Mithilfe frei zugänglicher Geodaten aus verschiedenen Quellen (Fernerkundungsdaten, administrativen Informationen, Social Media, Mobile Apps, Monitoring-Bibliotheken, offene Bilddatenbanken) werden Prototypen für die Deep Learning basierte Extraktion und Klassifikation von Baum- und Bestandsmerkmalen für vier verschiedene Anwendungsfälle aus den Bereichen Forst-, Naturschutz- und Infrastrukturmonitoring entwickelt.

 

Fernerkundungsdaten diverser Satellitenmissionen der ESA und NASA, Luftbilddaten sowie Geodaten über den Zustand der Umwelt stehen zunehmend kostenfrei und in großem Umfang zur Verfügung. Gleichzeitig ermöglichen Texte, Fotos und Videos aus Social Media Plattformen wie Flickr, Twitter oder Open Street Map den Zugang zu weiteren Informationen über unsere Umwelt. Eine händische Auswertung der sich ergebenden riesigen Datenmengen wäre jedoch zu zeit- und arbeitsintensiv.

 

Das Deep Learning Kompetenzzentrum des DFKI und der Forschungsbereich Smarte Daten und Wissensdienste entwickeln bereits seit längerer Zeit KI-Verfahren zur Analyse von Luft- und Satellitenaufnahmen, die sowohl eine lokale Auswertung als auch deren globale Analyse ermöglichen sollen. In TreeSatAI wollen die Wissenschaftler neben CNNs (Convolutional Neural Networks) auch spezialisierte LSTM-Modelle (Long Short-Term Memory) aus dem Bereich Deep Learning einsetzen, um die zeitliche Entwicklung von Waldgebieten automatisiert auf einer großen Fläche zu ermöglichen und so Umwelt- und Waldexperten zu unterstützen.

 

Eine abflugbereite Drohne für die Feldtests. Foto: TU Berlin / FG Geoinformation in der Umweltplanung
Eine abflugbereite Drohne für die Feldtests. Foto: TU Berlin / FG Geoinformation in der Umweltplanung

 

Eine der großen Herausforderungen hierbei ist die Beschaffung ausreichender, qualitativ hochwertiger Trainingsdaten zum Trainieren der Algorithmen sowie die Evaluation der sich ergebenden Modelle durch Experten aus dem Forst und Umweltbereich. Im Projekt werden daher die verschiedenen Kompetenzen der Projektpartner genutzt und miteinander kombiniert, um die zahlreichen Herausforderungen des ambitionierten Projektes meistern zu können.
(Udo Urban DFKI Kaiserslautern)

 

Link
Projektseite TreeSatAI



zurück zur Übersicht oder zur Startseite


 



2003 - 2020 - arboristik.de - All rights reserved